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Aufgabe 3: Eigens
haften von Funktionen (4+6+2)

a) Geben Sie zu jeder der folgenden Funktionen an, ob sie injektiv, surjektiv oder bijektiv

ist:

f1 : Z → Z, x 7→ 2x+ 2,

f2 : Q → Q, x 7→ 2x+ 2,

f3 : R → R, x 7→ x2 + 2,

f4 : [0,∞) → [2,∞), x 7→ x2 + 2.

b) Geben Sie zu jeder der folgenden Funktionen die inverse Funktion an und skizzieren Sie

je den Funktionsgraphen der Funktion und der inversen Funktion:

g1 : R → R, x 7→ 2x− 1,

g2 : R\{0} → R\{0}, x 7→
1

x
,

g3 : R → (0,∞), x 7→ ex.


) Betra
hten Sie Mengen M1, M2, M3 und zwei Abbildungen

f : M1 → M2,

g : M2 → M3.

Beweisen Sie: Falls f und g injektiv sind ist au
h g ◦ f injektiv.

Aufgabe 4: Gradient, Divergenz und Rotation (4+8+10 Punkte)

Die Raumkoordinaten des R3
seien hier mit x1, x2, x3 bezei
hnet.

a) Bere
hnen Sie die folgenden partiellen Ableitungen:
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b) Bere
hnen Sie:
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) Beweisen Sie, dass für beliebige

1

skalare Felder f (~x) , g (~x) und beliebige Vektorfelder

~V (~x) gilt:

~∇ (f (~x) · g (~x)) = f (~x) ~∇g (~x) + g (~x) ~∇f (~x) ,
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(Hinweis:
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Bemerkung: Genau genommen müssen die Felder so bes
ha�en sein, dass die entspre
henden Ableitungen

existieren. Das setzen wir hier voraus. Funktionen, deren Ableitungen ni
ht immer existieren, bespre
hen

wir später in der Vorlesung.
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