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Aufgabe 5: Matrizen und erstes Symanzik-Polynom

Berechnen Sie für den Feynman-Graphen
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das erste Symanzik-Polynom auf drei verschiedenen Wegen: a) über die erweiterte Loop-

Matrix, b) über die erweiterte Laplace-Matrix, c) über die Spannbäume des Graphen.

Aufgabe 6: Beide Symanzik-Polynome

Betrachten Sie die masselosen Feynman-Graphen
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mit einlaufenden Impulsen p1, p2, p3, p4, die die on-shell-Relationen p2i = 0, i = 1, ..., 4

erfüllen.
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a) Berechnen Sie mit einer Methode Ihrer Wahl das erste und zweite Symanzik-Polynom

beider Graphen. Drücken Sie das zweite Symanzik-Polynom je mit Hilfe der Mandelstam-

Variablen s = (p1 + p2)
2, t = (p1 + p3)

2, u = (p1 + p4)
2 aus.

b) Die beiden Feynman-Graphen sind als planare und nicht-planare Zwei-Schleifen-Doppelbox

bekannt. Suchen Sie im Internet die Forschungsarbeiten, in denen ihre Feynman-Integrale

(masselos, on-shell) erstmalig analytisch berechnet wurden. Geben Sie einen Literaturverweis

auf diese Artikel an. (Tipp: Sie können auch die Korrektheit Ihrer Polynome überprüfen.)

Aufgabe 7: Das skalare Ein-Schleifen-Propagator-Integral

Betrachten Sie für den Ein-Schleifen-Graphen

p

das skalare, masselose Feynman-Integral

I =
∫

dDk

πD/2

1

((p+ k)2)ν1 (k2)ν2

für positive, ganzzahlige ν1, ν2. Berechnen Sie dieses Integral, indem Sie das Ergebnis mit

Hilfe der Eulerschen Gamma-Funktion Γ ausdrücken. Nutzen Sie hierfür die Eulersche Beta-

Funktion

B(x, y) =
∫

1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
.
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